The TMA Technique
In a typical TMA experiment, the sample is placed on the sample support and a constant load is applied via a measuring probe. The probe remains in contact with the sample and moves up or down as the sample expands or contracts with a change in temperature. The displacement of the probe is measured by means of a sensor. The sample set-up and applied load vary depending on the measurement mode and the information required.
Thermal expansion or shrinkage, as well as the deformation or stiffness of the material, can be determined based on the set-up and measured displacement. Typical properties of interest determined by TMA are the glass transition, coefficient of thermal expansion (CTE), and Young’s modulus.
TMA is a versatile technique that can be used to study a wide range of materials, including polymers, composites, ceramics, metals, and biomaterials. It is commonly used in material research, quality control, and failure analysis applications.
Join our live webinar to learn all about TMA and don’t miss the opportunity to ask our experts your questions!